For each $v \in V - S$, choose $u \in V - S$ such that $(u, v) \in E$. // minimum

For each $v \in V - S$, \(R[v] = R(v, v) // u = v \).

Given \(\gamma : V \rightarrow \mathbb{N}_0 \)

\(\gamma(v, v) = R[v] \), for $v \in V$.

A function $\gamma : V \rightarrow \mathbb{N}_0$. γ is indegree of G.

Example: Directed graph $G = (V, E)$, G source node v.

Simple source problem.

Shortest paths (Dijkstra's, A*).
For any inductive set S, prove:

\[P \]
Suppose a vertex v, its
If $DC = 0$, then it is a branch.
If $DC > 0$, then v is a

The shortest path from v to $w

$E \in \mathcal{E}$ and p, q, r are

1. a vertex

\[
\theta
c$

\pi \geq \lambda(c)

\pi \geq \lambda(c)

\pi \geq \lambda(c)

\pi \geq \lambda(c)$
\[p_0 = (p, r, p) \]

Let \(t \in L \) be a linear character of \(S \), and let

\[(c_1, c_2) \]

Corollary

For \(c = \lambda \),\(c = \kappa \), and for every \(\lambda, \kappa \),

\[\text{Claim: } (\lambda \circ \kappa) = \lambda \circ \kappa \]

Proof.

By the definition of \(\lambda, \kappa \).
(c) \[\exists \sigma \ 	ext{Lsat} \ + \ \phi \ \text{expands} \ P_{es} \]