Minimum-cost spanning tree (Kruskal's algorithm).

Input. An connected undirected graph \(G = (V, E) \) with a cost function \(c \) on the edges.

Output. \(S = (V, T) \), a minimum-cost spanning tree for \(G \).

1. **Initialization:**
 - \(T \leftarrow \emptyset \)
 - \(VS \leftarrow \emptyset \)
 - Construct a priority queue \(Q \) containing all edges in \(E \):
 - For each vertex \(v \in V \), do add \(\{ v \} \) to \(VS \)
 - While (\(|VS| > 1 \)) {
 - Choose \((v, w)\), an edge in \(Q \) of lowest cost:
 - Delete \((v, w)\) from \(Q \)
 - If (\(v \) and \(w \) are in different sets \(W_1 \) and \(W_2 \) in \(VS \)) {
 - Replace \(W_1 \) and \(W_2 \) in \(VS \) by \(W_1 \cup W_2 \):
 - Add \((v, w)\) to \(T \)
 - }
 - }

Minimum-cost spanning tree algorithm

Lemma 1: Let \(G = (V, E) \) be a connected, undirected graph and \(S = (V, T) \) a spanning tree for \(G \). Then

a) For all \(v_1 \) and \(v_2 \) in \(V \), the path between \(v_1 \) and \(v_2 \) in \(S \) is unique, and

b) If any edge in \(E \setminus T \) is added to \(S \), a unique cycle results.

Proof.

a) Is trivial, since if there were more than one path there would be a cycle.

b) Is likewise trivial, since there must already be a path between the endpoints of the added edge.

Lemma 2: Let \(G = (V, E) \) be a connected, undirected graph and \(c \) a cost function on its edges. Let \(\{(V_1, T_1), (V_2, T_2), \ldots, (V_k, T_k)\} \) be any spanning forest for \(G \) with \(k > 1 \).

Let \(T = \bigcup_{i=1}^{k} T_i \).

Suppose \(e = (v, w) \) is an edge of lowest cost in \(E \setminus T \) such that \(v \in V_1 \) and \(w \) not in \(W \). Then there is a spanning tree for \(G \) which includes \(T \cup \{ e \} \) and is of as low a cost as any spanning tree for \(G \) that includes \(T \).

Proof: Suppose to the contrary that \(S' = (V, T') \) is a spanning tree for \(G \) such that \(T' \) includes \(T \) but not \(e \), and that \(S' \) is of lower cost than any spanning tree for \(G \) that includes \(T \cup \{ e \} \).

By Lemma 2 (b), the addition of \(e \) to \(S' \) forms a cycle. The cycle must contain an edge \(e' = (v', w') \), other than \(e \), such that \(e' \in V_1 \) and \(w' \in V_1 \),
By hypothesis $c(e) \leq c(e')$.

Consider the graph S formed by adding e to S' and deleting e' from S'. S has no cycle, since the only cycle was broken by deletion of edge e'. Moreover, all vertices in V are still connected, since there is a path between v' and w' in S. Thus S is a spanning tree for G. Since $c(e) \leq c(e')$, S is no more costly than S'. But S contains both T and e, contradicting the minimality of S'.

QED

Minimum Cost spanning Tree

Running time: $O(|E| \log(|V|))$

Explanation in next class. Also we can do better

Prim's MST Algorithm

Initialize $X = \{s\}$ [$s \in V$ chosen arbitrarily]

$T = \emptyset$ [invariant: $X =$ vertices spanned by tree-so-far T]

While ($X \neq V$) {

Let $e = (u,v)$ be the cheapest edge of G with $u \in X, v$ not$\in X$.

Add e to T

Add v to X.}
Note: While loop increases the number of spanned vertices in cheapest way possible.

Definition: A cut of a graph $G = (V, E)$ is a partition of V into 2 non-empty sets.

Empty Cut Lemma: A graph is not connected $\iff \exists$ cut (A, B) with no crossing edges.

Proof: (\Rightarrow) Assume the RHS. Pick any $u \in A$ and $v \in B$. Since no edges cross (A, B) there is no u,v path in G. $\Rightarrow G$ not connected.

(\Leftarrow) Assume the LHS. Suppose G has no $u-v$ path. Define $A = \{\text{Vertices reachable from } u \text{ in } G\}$ (u’s connected component) $B = \{\text{All other vertices}\}$ (all other connected components)

Note: No edges cross cut (A, B)

Double-Crossing Lemma: Suppose the cycle $C \subseteq E$ has an edge crossing the cut (A, B): then so does some other edge of C.

Lonely Cut Corollary: If e is the only edge crossing some cut (A, B), then it is not in any cycle. [If it were in a cycle, some other edge would have to cross the cut!]

Claim: Prim’s algorithm outputs a spanning tree. //Not claiming MST yet

Proof: (a) Algorithm maintains invariant that T spans X [straightforward induction - you check] lonely in this cut corollary

QED

(b) Can’t get stuck with $X \neq V$; otherwise the cut $(X, V - X)$ must be empty; hence by Empty Cut Lemma input graph G is disconnected.

(3) No cycles ever get created in T.

Consider any iteration, with current sets X and T. Suppose e gets added. Key point: e is the first edge crossing $(X, V - X)$ that gets added to $T \Rightarrow$ its addition can’t create a cycle in T (by Lonely Cut Corollary). QED!

The Cut Property

Assumption: Distinct edge costs.

CUT PROPERTY: Consider an edge e of G. Suppose there is a cut (A, B) such that e is the cheapest edge of G that crosses it. Then e belongs to the MST of G.

Proof: Suppose there is an edge e that is the cheapest one crossing a cut (A, B), yet e is not in the MST T^*.

(Idea: Exchange e with another edge in T^* to make it even cheaper to get a contradiction).

Now suppose e not in T^*, since G is connected there must be an $f \in T^*$.

That crosses the cut (A, B).

Consider $T^* \cup \{e\} - \{f\}$ and check if it is spanning tree of G. If so clearly the new tree $T^* \cup \{e\} - \{f\}$ is of lower cost, contradiction.
T*U\{e\}−\{f\} is not a spanning tree then adding edge e has created a cycle.

By the Double-Crossing Lemma Some other edge e' of C [with e' != e and e' ∈ T*] crosses (A,B).

You check: T = T*U\{e\}−\{e'\} is also a spanning tree. Since c(e) < c(e'),
T cheaper than purported MST T*,
QED.

Theorem: Prim’s algorithm always outputs a minimum-cost spanning tree.

Proof: Prim’s algorithm outputs a spanning tree T. (previous proof)
Every edge e ∈ T is explicitly justified by the Cut Property.
hence T is a subset of the MST ⇒ Since T is already a spanning tree,
it must be the MST.

Running Time \(O(|E| \log (|V|))\)