\[\text{EC}_x = \frac{2}{5} \]

\[\frac{2}{5} = 2 - \frac{2}{5} \]

\[\frac{2}{5} = 2 - \frac{2}{5} \]

1

\[\frac{2}{5} = 2 - \frac{2}{5} \]

\[\frac{2}{5} = 2 - \frac{2}{5} \]
\[
\theta \leq 2 \pi \frac{\ln n}{n^2 - 2}
\]

Observe:

\[
\theta = \frac{2 \pi}{n^2 - 2}
\]
Let $A(3)$

If $x = r$

Let P be the point.

$x = 2 - p + 1$

Let $Q = \text{Perpendicular bisector of } (A, P)$

Let $A(CP)$

Let $P = (r)$

$\overline{A - S - C - E - L}$

Page 216
\[T(n) = \frac{n}{2} \cdot c_n + c_n \]

By induction we will show \(T(n) = c_n \).

\[T(n) = \frac{n}{2} \cdot T(n-1) + o(n) \]

For

\[\text{Random-Select}(A, i, j, x) \]

in

\[\text{Randomize-Select}(A', p, 2i) \]

if

\[(i < r) \]
$T(n) = \sum_{i=1}^{n} \frac{1}{i} + c_n$

as $n \to \infty$,

$\frac{1}{n} \leq \frac{1}{n} \leq \frac{1}{n(n-k)}$

$\frac{1}{k} \leq \frac{1}{k} \leq \frac{1}{k(n-k)}$

$\sum_{i=1}^{n} \frac{1}{i} \leq \sum_{i=1}^{n} \frac{1}{n} \leq \sum_{i=1}^{n} \frac{1}{k(n-k)}$

$\frac{n}{n} \leq \sum_{i=1}^{n} \frac{1}{i} \leq \sum_{i=1}^{n} \frac{1}{k(n-k)}$

$n \geq \sum_{i=1}^{n} \frac{1}{i} \geq \sum_{i=1}^{n} \frac{1}{k(n-k)}$

$\sum_{i=1}^{n} \frac{1}{i} \to \ln(n) + \gamma$
\[d(p_1, p_2) = \sqrt{(a_1-a_2)^2 + (b_1-b_2)^2} \]

Proof: Let \(p \in (\mathbb{R}^2) \) and \(q \in (\mathbb{R}^2) \).

Claim: Any set \(P = \{ p_1, p_2, \ldots, p_n \} \) of points in \(\mathbb{R}^2 \).

Closest Pair:
Let \(P \) be a copy of \(P \) pasted by \(h \) and \(\alpha \). Then each \(\alpha \) of \(\beta \) is cut by \(h \).
サスラB & x, SERVER 2.

\(\alpha \times \gamma \), \(x \times \gamma \):

Let \(\theta = \text{legal height of } \gamma, \quad \gamma = \text{height of } \theta \).
Let \(\delta = \min \{ d(p, q_1), d(q, \bar{q_2}) \} \) where (2)

\[\text{closest pair} (q_1, \bar{q_2}) \] (commutative reordering)

(1) (1, q_1) closest pair \((q_1, q_2)\) (2) (q_2, \bar{q_2})

Choose pair \((q_1, \bar{q_2})\) (commutative reordering)
In each box of the square grid, only one point exists.

Write using Pythagorean theorem, and I point.
Now consider the point \(b \) with the smallest \(y \) coordinate. [Use Py to set it]
you only need to consider 7 points
with respect to \(y \).

Do this for each increasing point in \(Py \)
in the rectangle:

\[f(n) = 2 f(n/2) + 7n \].