Chapter 8

Statement-Level Control Structures
Chapter 8 Topics

- Introduction
- Selection Statements
- Iterative Statements
- Unconditional Branching
- Guarded Commands
- Conclusions
Levels of Control Flow

- Within expressions (Chapter 7)
- Among program units (Chapter 9)
- Among program statements (this chapter)
Control Statements: Evolution

• FORTRAN I control statements were based directly on IBM 704 hardware
• Much research and argument in the 1960s about the issue
 – One important result: It was proven that all algorithms represented by flowcharts can be coded with only two-way selection and pretest logical loops
Control Structure

• A control structure is a control statement and the statements whose execution it controls

• Design question
 – Should a control structure have multiple entries?
Selection Statements

• *A selection statement* provides the means of choosing between two or more paths of execution

• Two general categories:
 – Two–way selectors
 – Multiple–way selectors
Two-Way Selection Statements

- **General form:**
  ```latex
  \textbf{if} \ control\_expression \\
  \textbf{then} \ \text{clause} \\
  \textbf{else} \ \text{clause}
  ```

- **Design Issues:**
 - What is the form and type of the control expression?
 - How are the \textbf{then} and \textbf{else} clauses specified?
 - How should the meaning of nested selectors be specified?
The Control Expression

• If the then reserved word or some other syntactic marker is not used to introduce the then clause, the control expression is placed in parentheses

• In C89, C99, Python, and C++, the control expression can be arithmetic

• In most other languages, the control expression must be Boolean
Clause Form

- In many contemporary languages, the then and else clauses can be single statements or compound statements
- In Perl, all clauses must be delimited by braces (they must be compound)
- In Python and Ruby, clauses are statement sequences
- Python uses indentation to define clauses

```python
if x > y :
    x = y
    print "x was greater than y"
```
Nesting Selectors

• Java example

```java
if (sum == 0)
    if (count == 0)
        result = 0;
    else
        result = 1;
```

• Which `if` gets the `else`?

• Java's static semantics rule: `else` matches with the nearest previous `if`
Nesting Selectors (continued)

• To force an alternative semantics, compound statements may be used:

```java
if (sum == 0) {
    if (count == 0)
        result = 0;
}
else result = 1;
```

• The above solution is used in C, C++, and C#
Nesting Selectors (continued)

- Statement sequences as clauses: Ruby

```ruby
if sum == 0 then
  if count == 0 then
    result = 0
  else
    result = 1
  end
else
  result = 1
end
```
Nesting Selectors (continued)

- Python

```python
if sum == 0 :
    if count == 0 :
        result = 0
    else :
        result = 1
```
Selector Expressions

• In ML, F#, and Lisp, the selector is an expression; in F#:

```fsharp
let y =
    if x > 0 then x
else 2 * x
```

- If the `if` expression returns a value, there must be an else clause (the expression could produce a unit type, which has no value). The types of the values returned by then and else clauses must be the same.
Multiple-Way Selection Statements

• Allow the selection of one of any number of statements or statement groups
• Design Issues:
 1. What is the form and type of the control expression?
 2. How are the selectable segments specified?
 3. Is execution flow through the structure restricted to include just a single selectable segment?
 4. How are case values specified?
 5. What is done about unrepresented expression values?
Multiple-Way Selection: Examples

- C, C++, Java, and JavaScript

```java
switch (expression) {
    case const_expr1: stmt1;
    ...  
    case const_exprn: stmtn;
    [default: stmtn+1]
}
```
Multiple-Way Selection: Examples

- Design choices for C’s `switch` statement
 1. Control expression can be only an integer type
 2. Selectable segments can be statement sequences, blocks, or compound statements
 3. Any number of segments can be executed in one execution of the construct (*there is no implicit branch at the end of selectable segments*)
 4. `default` clause is for unrepresented values (if there is no `default`, the whole statement does nothing)
Multiple-Way Selection: Examples

• C#
 - Differs from C in that it has a static semantics rule that disallows the implicit execution of more than one segment
 - Each selectable segment must end with an unconditional branch (goto or break)
 - Also, in C# the control expression and the case constants can be strings
Multiple-Way Selection: Examples

• Ruby has two forms of case statements—we’ll cover only one

```ruby
leap = case
  when year % 400 == 0 then true
  when year % 100 == 0 then false
  else year % 4 == 0
end
```
Implementing Multiple Selectors

• Approaches:
 – Multiple conditional branches
 – Store case values in a table and use a linear search of the table
 – When there are more than ten cases, a hash table of case values can be used
 – If the number of cases is small and more than half of the whole range of case values are represented, an array whose indices are the case values and whose values are the case labels can be used
Multiple–Way Selection Using if

• Multiple Selectors can appear as direct extensions to two–way selectors, using else–if clauses, for example in Python:

```python
if count < 10 :
    bag1 = True
elif count < 100 :
    bag2 = True
elif count < 1000 :
    bag3 = True
```
Multiple-Way Selection Using if

- The Python example can be written as a Ruby case

```ruby
case
  when count < 10  then bag1 = true
  when count < 100 then bag2 = true
  when count < 1000 then bag3 = true
end
```
Scheme’s Multiple Selector

- General form of a call to `COND`:

  ```scheme
  (COND
    (predicate_1 expression_1)
    ...
    (predicate_n expression_n)
    [(ELSE expression_{n+1})]
  )
  ```

 - The `ELSE` clause is optional; `ELSE` is a synonym for `true`
 - Each predicate–expression pair is a parameter
 - Semantics: The value of the evaluation of `COND` is the value of the expression associated with the first predicate expression that is true
Iterative Statements

• The repeated execution of a statement or compound statement is accomplished either by iteration or recursion

• General design issues for iteration control statements:
 1. How is iteration controlled?
 2. Where is the control mechanism in the loop?
Counter–Controlled Loops

• A counting iterative statement has a loop variable, and a means of specifying the initial and terminal, and stepsizes values

• Design Issues:
 1. What are the type and scope of the loop variable?
 2. Should it be legal for the loop variable or loop parameters to be changed in the loop body, and if so, does the change affect loop control?
 3. Should the loop parameters be evaluated only once, or once for every iteration?
 4. What is the value of the loop variable after loop termination?
Counter-Controlled Loops: Examples

• C–based languages
 \[\texttt{for (}\ [\texttt{expr}_1] \ ; \ [\texttt{expr}_2] \ ; \ [\texttt{expr}_3]\)] \texttt{statement}\]
 – The expressions can be whole statements, or even statement sequences, with the statements separated by commas
 – The value of a multiple-statement expression is the value of the last statement in the expression
 – If the second expression is absent, it is an infinite loop

• Design choices:
 – There is no explicit loop variable
 – Everything can be changed in the loop
 – The first expression is evaluated once, but the other two are evaluated with each iteration
 – It is legal to branch into the body of a for loop in C
Counter-Controlled Loops: Examples

• **C++ differs from C in two ways:**
 1. The control expression can also be Boolean
 2. The initial expression can include variable definitions (scope is from the definition to the end of the loop body)

• **Java and C#**
 - Differs from C++ in that the control expression must be Boolean
Counter–Controlled Loops: Examples

- **Python**
  ```python
  for loop_variable in object:
    - loop body
  [else:
    - else clause]
  ```

 - The object is often a range, which is either a list of values in brackets ([2, 4, 6]), or a call to the `range` function, as in `range(5)`, which returns 0, 1, 2, 3, 4

 - The loop variable takes on the values specified in the given range, one for each iteration

 - At loop termination, the loop variable has the last value that was assigned to it

 - The else clause, which is optional, is executed if the loop terminates normally
Counter–Controlled Loops: Examples

- F#
 - Because counters require variables, and functional languages do not have variables, counter–controlled loops must be simulated with recursive functions

```fsharp
define rec forLoop loopBody reps =
  if reps <= 0 then ()
  else loopBody()
  forLoop loopBody, (reps - 1)
```

- This defines the recursive function `forLoop` with the parameters `loopBody` (a function that defines the loop’s body) and the number of repetitions

 - `()` means do nothing and return nothing
Logically–Controlled Loops

• Repetition control is based on a Boolean expression

• Design issues:
 – Pretest or posttest?
 – Should the logically controlled loop be a special case of the counting loop statement or a separate statement?
Logically–Controlled Loops: Examples

- C and C++ have both pretest and posttest forms, in which the control expression can be arithmetic:

  ```
  while (control_expr) do
    loop body
  end loop
  while (control_expr)
  ```

 - In both C and C++ it is legal to branch into the body of a logically–controlled loop

- Java is like C and C++, except the control expression must be Boolean (and the body can only be entered at the beginning -- Java has no goto
Logically–Controlled Loops: Examples

• **F#**

 As with counter–controlled loops, logically–controlled loops can be simulated with recursive functions

  ```fsharp
  let rec whileLoop test body =
  if test() then
    body()
    whileLoop test body
  else ()
  
  This defines the recursive function **whileLoop** with parameters **test** and **body**, both functions. **test** defines the control expression
User–Located Loop Control Mechanisms

- Sometimes it is convenient for the programmers to decide a location for loop control (other than top or bottom of the loop)
- Simple design for single loops (e.g., break)
- Design issues for nested loops
  1. Should the conditional be part of the exit?
  2. Should control be transferable out of more than one loop?
User–Located Loop Control Mechanisms

- C, C++, Python, Ruby, and C# have unconditional unlabeled exits (break).
- Java and Perl have unconditional labeled exits (break in Java, last in Perl).
- C, C++, and Python have an unlabeled control statement, continue, that skips the remainder of the current iteration, but does not exit the loop.
- Java and Perl have labeled versions of continue.
Iteration Based on Data Structures

- The number of elements in a data structure controls loop iteration.
- Control mechanism is a call to an `iterator` function that returns the next element in some chosen order, if there is one; else loop is terminate.
- C's `for` can be used to build a user-defined iterator:

```c
for (p=root; p==NULL; traverse(p)){
 ...
}
```
Iteration Based on Data Structures (continued)

- **PHP**
  - `current` points at one element of the array
  - `next` moves `current` to the next element
  - `reset` moves `current` to the first element

- **Java 5.0** (uses `for`, although it is called `foreach`)
  For arrays and any other class that implements the `Iterable` interface, e.g., `ArrayList`

```java
for (String myElement : myList) { ... }
```
C# and F# (and the other .NET languages) have generic library classes, like Java 5.0 (for arrays, lists, stacks, and queues). Can iterate over these with the `foreach` statement. User-defined collections can implement the `IEnumerator` interface and also use `foreach`.

```csharp
List<String> names = new List<String>();
 names.Add("Bob");
 names.Add("Carol");
 names.Add("Ted");
 foreach (Strings name in names)
 Console.WriteLine ("Name: {0}", name);
```
Iteration Based on Data Structures (continued)

- Ruby blocks are sequences of code, delimited by either braces or `do` and `end`:
  - Blocks can be used with methods to create iterators
  - Predefined iterator methods (`times`, `each`, `upto`):
    ```ruby
 3.times {puts "Hey!"}
 list.each {|value| puts value}
 (list is an array; value is a block parameter)
 1.upto(5) { |x| print x, " " }
 Iterators are implemented with blocks, which can also be defined by applications
  ```
Ruby blocks are attached methods calls; they can have parameters (in vertical bars); they are executed when the method executes a `yield` statement

```ruby
def fibonacci(last)
 first, second = 1, 1
 while first <= last
 yield first
 first, second = second, first + second
 end
end
```

```ruby
puts "Fibonacci numbers less than 100 are:
```

```ruby
fibonacci(100) { |num| print num, " " }
```

```ruby
puts
```

- Ruby has a `for` statement, but Ruby converts them to `upto` method calls
Python’s `yield` statement

Suppose we have a function, `traverse`, that produces the nodes of a data structure

```python
def traverse(self):
 yield nod
```

- Every time `traverse` is called, it returns the next node of the structure on which it is called – `yield` is like a return

- The presence of the `yield` statement in the `traverse` function completely changes its semantics – it is run in its own thread of control. In all but the first call, the call is actually like a resume – it starts in the state it was in at the end of its last execution. It is history sensitive.
Unconditional Branching

• Transfers execution control to a specified place in the program
• Represented one of the most heated debates in 1960’s and 1970’s
• Major concern: Readability
• Some languages do not support goto statement (e.g., Java)
• C# offers goto statement (can be used in switch statements)
• Loop exit statements are restricted and somewhat camouflaged goto’s
Guarded Commands

• Designed by Dijkstra
• Purpose: to support a new programming methodology that supported verification (correctness) during development
• Basis for two linguistic mechanisms for concurrent programming (in CSP)
• Basic Idea: if the order of evaluation is not important, the program should not specify one
Selection Guarded Command

• Form

```plaintext
if <Boolean expr> -> <statement>
[] <Boolean expr> -> <statement>

...

[] <Boolean expr> -> <statement>
fi
```

• Semantics: when construct is reached,
  - Evaluate all Boolean expressions
  - If more than one are true, choose one non-deterministically
  - If none are true, it is a runtime error
Loop Guarded Command

- **Form**
  
  \[
  \text{do} \ \langle \text{Boolean} \rangle \rightarrow \langle \text{statement} \rangle \\
  \text{[ ]} \ \langle \text{Boolean} \rangle \rightarrow \langle \text{statement} \rangle \\
  \text{...}
  \text{[ ]} \ \langle \text{Boolean} \rangle \rightarrow \langle \text{statement} \rangle
  \text{od}
  \]

- **Semantics:** for each iteration
  
  - Evaluate all Boolean expressions
  - If more than one are true, choose one non-deterministically; then start loop again
  - If none are true, exit loop
Guarded Commands: Rationale

- Connection between control statements and program verification is intimate
- Verification is impossible with `goto` statements
- Verification is possible with only selection and logical pretest loops
- Verification is relatively simple with only guarded commands
Conclusions

• Variety of statement-level structures
• Choice of control statements beyond selection and logical pretest loops is a trade-off between language size and writability
• Functional and logic programming languages use quite different control structures