Chapter 16

Logic Programming Languages
Chapter 16 Topics

- Introduction
- A Brief Introduction to Predicate Calculus
- Predicate Calculus and Proving Theorems
- An Overview of Logic Programming
- The Origins of Prolog
- The Basic Elements of Prolog
- Deficiencies of Prolog
- Applications of Logic Programming
Introduction

- Programs in logic languages are expressed in a form of symbolic logic
- Use a logical inferencing process to produce results
- *Declarative* rather than *procedural*:
 - Only specification of *results* are stated (not detailed *procedures* for producing them)
Proposition

• A logical statement that may or may not be true
 – Consists of objects and relationships of objects to each other
Symbolic Logic

• Logic which can be used for the basic needs of formal logic:
 – Express propositions
 – Express relationships between propositions
 – Describe how new propositions can be inferred from other propositions

• Particular form of symbolic logic used for logic programming called *predicate calculus*
Object Representation

- Objects in propositions are represented by simple terms: either constants or variables
- **Constant**: a symbol that represents an object
- **Variable**: a symbol that can represent different objects at different times
 - Different from variables in imperative languages
Compound Terms

- *Atomic propositions* consist of compound terms
- *Compound term*: one element of a mathematical relation, written like a mathematical function
 - Mathematical function is a mapping
 - Can be written as a table
Parts of a Compound Term

- Compound term composed of two parts
 - Functor: function symbol that names the relationship
 - Ordered list of parameters (tuple)
- Examples:

 student(jon)
 like(seth, OSX)
 like(nick, windows)
 like(jim, linux)
Forms of a Proposition

• Propositions can be stated in two forms:
 – *Fact*: proposition is assumed to be true
 – *Query*: truth of proposition is to be determined

• Compound proposition:
 – Have two or more atomic propositions
 – Propositions are connected by operators
Logical Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>(\neg)</td>
<td>(\neg a)</td>
<td>not a</td>
</tr>
<tr>
<td>conjunction</td>
<td>(\land)</td>
<td>(a \land b)</td>
<td>a and b</td>
</tr>
<tr>
<td>disjunction</td>
<td>(\lor)</td>
<td>(a \lor b)</td>
<td>a or b</td>
</tr>
<tr>
<td>equivalence</td>
<td>(\equiv)</td>
<td>(a \equiv b)</td>
<td>a is equivalent to b</td>
</tr>
<tr>
<td>implication</td>
<td>(\supset)</td>
<td>(a \supset b)</td>
<td>a implies b</td>
</tr>
<tr>
<td></td>
<td>(\subseteq)</td>
<td>(a \subseteq b)</td>
<td>b implies a</td>
</tr>
</tbody>
</table>
Quantifiers

<table>
<thead>
<tr>
<th>Name</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>universal</td>
<td>$\forall X. P$</td>
<td>For all X, P is true</td>
</tr>
<tr>
<td>existential</td>
<td>$\exists X. P$</td>
<td>There exists a value of X such that P is true</td>
</tr>
</tbody>
</table>
Clausal Form

• Too many ways to state the same thing
• Use a standard form for propositions
• **Clausal form:**
 - $B_1 \cup B_2 \cup \ldots \cup B_n \subseteq A_1 \cap A_2 \cap \ldots \cap A_m$
 - means if all the As are true, then at least one B is true

• **Antecedent:** right side
• **Consequent:** left side
Predicate Calculus and Proving Theorems

- A use of propositions is to discover new theorems that can be inferred from known axioms and theorems
- *Resolution*: an inference principle that allows inferred propositions to be computed from given propositions
Resolution

- **Unification**: finding values for variables in propositions that allows matching process to succeed
- **Instantiation**: assigning temporary values to variables to allow unification to succeed
- After instantiating a variable with a value, if matching fails, may need to *backtrack* and instantiate with a different value
Proof by Contradiction

- **Hypotheses**: a set of pertinent propositions
- **Goal**: negation of theorem stated as a proposition
- Theorem is proved by finding an inconsistency
Theorem Proving

• Basis for logic programming
• When propositions used for resolution, only restricted form can be used
• *Horn clause* – can have only two forms
 – *Headded*: single atomic proposition on left side
 – *Headless*: empty left side (used to state facts)
• Most propositions can be stated as Horn clauses
Overview of Logic Programming

- **Declarative semantics**
 - There is a simple way to determine the meaning of each statement
 - Simpler than the semantics of imperative languages

- **Programming is nonprocedural**
 - Programs do not state now a result is to be computed, but rather the form of the result
Example: Sorting a List

- Describe the characteristics of a sorted list, not the process of rearranging a list

\[
\text{sort}(\text{old_list}, \text{new_list}) \subseteq \text{permute} (\text{old_list}, \text{new_list}) \cap \text{sorted} (\text{new_list})
\]

\[
\text{sorted} (\text{list}) \subseteq \forall j \text{ such that } 1 \leq j < n, \text{ list}(j) \leq \text{list} (j+1)
\]
The Origins of Prolog

• University of Aix–Marseille (Calmerauer & Roussel)
 – Natural language processing
• University of Edinburgh (Kowalski)
 – Automated theorem proving
Terms

- This book uses the Edinburgh syntax of Prolog
- *Term*: a constant, variable, or structure
- *Constant*: an atom or an integer
- *Atom*: symbolic value of Prolog
- Atom consists of either:
 - a string of letters, digits, and underscores beginning with a lowercase letter
 - a string of printable ASCII characters delimited by apostrophes
Terms: Variables and Structures

- **Variable**: any string of letters, digits, and underscores beginning with an uppercase letter
- **Instantiation**: binding of a variable to a value
 - Lasts only as long as it takes to satisfy one complete goal
- **Structure**: represents atomic proposition functor (parameter list)
Fact Statements

• Used for the hypotheses
• Headless Horn clauses

female(shelley).

male(bill).

father(bill, jake).
Rule Statements

- Used for the hypotheses
- Headed Horn clause
- Right side: *antecedent* *(if part)*
 - May be single term or conjunction
- Left side: *consequent* *(then part)*
 - Must be single term
- *Conjunction*: multiple terms separated by logical AND operations (implied)
Example Rules

ancestor(mary, shelley) :- mother(mary, shelley).

• Can use variables (universal objects) to generalize meaning:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
grandparent(X, Z) :- parent(X, Y), parent(Y, Z).
Goal Statements

• For theorem proving, theorem is in form of proposition that we want system to prove or disprove – *goal statement*

• Same format as headless Horn

 man(fred)

• Conjunctive propositions and propositions with variables also legal goals

 father(X, mike)
Inferencing Process of Prolog

• Queries are called goals
• If a goal is a compound proposition, each of the facts is a subgoal
• To prove a goal is true, must find a chain of inference rules and/or facts. For goal Q:
 \[P_2 : - P_1 \]
 \[P_3 : - P_2 \]
 ...
 \[Q : - P_n \]

• Process of proving a subgoal called matching, satisfying, or resolution
Approaches

- **Matching** is the process of proving a proposition
- Proving a subgoal is called *satisfying* the subgoal
- **Bottom–up resolution, forward chaining**
 - Begin with facts and rules of database and attempt to find sequence that leads to goal
 - Works well with a large set of possibly correct answers
- **Top–down resolution, backward chaining**
 - Begin with goal and attempt to find sequence that leads to set of facts in database
 - Works well with a small set of possibly correct answers
- Prolog implementations use backward chaining
Subgoal Strategies

- When goal has more than one subgoal, can use either
 - Depth-first search: find a complete proof for the first subgoal before working on others
 - Breadth-first search: work on all subgoals in parallel
- Prolog uses depth-first search
 - Can be done with fewer computer resources
Backtracking

- With a goal with multiple subgoals, if fail to show truth of one of subgoals, reconsider previous subgoal to find an alternative solution: *backtracking*
- Begin search where previous search left off
- Can take lots of time and space because may find all possible proofs to every subgoal
Simple Arithmetic

• Prolog supports integer variables and integer arithmetic

• *is* operator: takes an arithmetic expression as right operand and variable as left operand

 \[A \textit{ is } B / 17 + C \]

• Not the same as an assignment statement!
 - The following is illegal:

 \[\textit{Sum} \textit{ is } \text{Sum} + \text{Number}. \]
Example

speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),
 time(X,Time),
 Y is Speed * Time.

A query: distance(chevy, Chevy_Distance).
Trace

- Built-in structure that displays instantiations at each step

- *Tracing model* of execution – four events:
 - *Call* (beginning of attempt to satisfy goal)
 - *Exit* (when a goal has been satisfied)
 - *Redo* (when backtrack occurs)
 - *Fail* (when goal fails)
Example

likes(jake, chocolate).
likes(jake, apricots).
likes(darcie, licorice).
likes(darcie, apricots).

trace.
likes(jake, X), likes(darcie, X).
(1) 1 Call: likes(jake, _0)?
(1) 1 Exit: likes(jake, chocolate)
(2) 1 Call: likes(darcie, chocolate)?
(2) 1 Fail: likes(darcie, chocolate)
(1) 1 Redo: likes(jake, _0)?
(1) 1 Exit: likes(jake, apricots)
(3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: likes(darcie, apricots)
X = apricots
List Structures

- Other basic data structure (besides atomic propositions we have already seen): list
- *List* is a sequence of any number of elements
- Elements can be atoms, atomic propositions, or other terms (including other lists)

\[
\text{[apple, prune, grape, kumquat]}
\]

\[
[\] \quad \text{(empty list)}
\]

\[
[\text{x} \mid \text{y}] \quad \text{(head x and tail y)}
\]
Append Example

append([], List, List).
append([Head | List_1], List_2, [Head | List_3]) :-
 append (List_1, List_2, List_3).
More Examples

reverse([], []).
reverse([Head | Tail], List) :-
 reverse(Tail, Result),
 append(Result, [Head], List).

member(Element, [Element | _]).
member(Element, [_ | List]) :-
 member(Element, List).

The underscore character means an anonymous variable—it means we do not care what instantiation it might get from unification.
Deficiencies of Prolog

- Resolution order control
 - In a pure logic programming environment, the order of attempted matches is nondeterministic and all matches would be attempted concurrently
- The closed-world assumption
 - The only knowledge is what is in the database
- The negation problem
 - Anything not stated in the database is assumed to be false
- Intrinsic limitations
 - It is easy to state a sort process in logic, but difficult to actually do—it doesn’t know how to sort
Applications of Logic Programming

- Relational database management systems
- Expert systems
- Natural language processing
Summary

- Symbolic logic provides basis for logic programming
- Logic programs should be nonprocedural
- Prolog statements are facts, rules, or goals
- Resolution is the primary activity of a Prolog interpreter
- Although there are a number of drawbacks with the current state of logic programming it has been used in a number of areas