26. The approach in these problems is to pick out the most rapidly growing term in each sum and discard the rest (including the multiplicative constants).

a) This is \(O(n^3 \cdot \log n + \log n \cdot n^2) \), which is the same as \(O(n^3 \cdot \log n) \).

b) Since \(2^n \) dominates \(n^2 \), and \(3^n \) dominates \(n^3 \), this is \(O(2^n \cdot 3^n) = O(6^n) \).

c) The dominant terms in the two factors are \(n^n \) and \(n! \), respectively. Therefore this is \(O(n^n n!) \).

30. a) This follows from the fact that for all \(x > 7 \), \(x \leq 3x + 7 \leq 4x \).

b) For large \(x \), clearly \(x^2 \leq 2x^2 + x - 7 \). On the other hand, for \(x \geq 1 \) we have \(2x^2 + x - 7 \leq 3x^2 \).

c) For \(x > 2 \) we certainly have \(|x + \frac{1}{2}| \leq 2x \) and also \(x \leq 2|x + \frac{1}{2}| \).

d) For \(x > 2 \), \(\log(x^2 + 1) \leq \log(2x^2) = 1 + 2 \log x \leq 3 \log x \) (recall that \(\log \) means \(\log_2 \)). On the other hand, since \(x \leq x^2 + 1 \) for all positive \(x \), we have \(\log x \leq \log(x^2 + 1) \).

e) This follows from the fact that \(\log_{10} x = C(\log_2 x) \), where \(C = 1/\log_2 10 \).