During lecture.

In which of the students stayed awake

discussed mathematics

(c) All students in this class like

understand mathematical induction

(b) Some person in this class does not

sleep tomorrow

(c) It will snow today but I will not go

#32

Page 113
\[\begin{align*}
\frac{\pi}{2} \quad \text{will be} \quad \text{reached} \quad \text{when} \quad x = \frac{\pi}{2}.
\end{align*} \]
given if \(n \) is not a perfect square
\(\sqrt{n} \) is irrational.

\(\Rightarrow \) that \(\sqrt{2} \) irrational and \(\sqrt{3} \) irrational.

Now we will show that \((\sqrt{2}+\sqrt{3})\) is irrational.

Proof: By contradiction.

Assume \((\sqrt{2}+\sqrt{3})\) is rational.

\(\Rightarrow \ (\sqrt{2}+\sqrt{3}) = \frac{a}{b} ; \ a, b \in \mathbb{N} \land b \neq 0 \)

\(\Rightarrow \ (\sqrt{2}+\sqrt{3})^2 = a^2 \)

\(\Rightarrow \ 2 + 2\sqrt{6} = a^2/b^2 \)

\(\Rightarrow \ 2\sqrt{6} = a^2/b^2 - 2 \)

\(\Rightarrow \ 2\sqrt{6} = \frac{a^2 - 2b^2}{b^2} \)

\(\Rightarrow \ \sqrt{6} = \frac{a^2 - 2b^2}{2b^2} ; \quad (a^2 - 2b^2) \in \mathbb{N} \)

\(2b^2 \in \mathbb{N} \land b^2 + 0 \)
(\theta + \beta) \text{ is rotational.}

\cong \text{ is isometric.}

Since \(\theta \) is far and perfect you

hence \(\theta \) is rotational.