The (4.0-6) = 2u \ (2^{4})

Choosing 5 of 6: \(_{5}^{6} \binom{}{6} = 56\)

Page 451

Hill Collected
The total sample space size (40)

Therefore by product rule

\[
\frac{6 \times 4}{40} = \frac{24}{40} = \frac{3}{5}
\]
A person can win if so many can win.

Can we come on the field of ways 4 people total 2.2 or the smaller space is the place 451

Page 451
(6) Sample Size is 11 = 50 x 50 x 50 x 50

Law: A = 1

Note: Some substitution is needed in the law.
\[P(k=0) = (9)^k \cdot \left(\frac{7}{9}\right)^k \cdot \left(\frac{2}{9}\right)^k = \left(\frac{7}{9}\right)^k \cdot \left(\frac{2}{9}\right)^k \]

We use Theorem 2, since we have a geometric distribution.
(b) \[1 - P(k=0) - P(k=1) \]

(1) \[P(k=0) = \frac{10}{10} \]

(2) \[P(k=1) = \frac{3}{10} + \frac{7}{10} \]

(3) \[P(k=2) = \frac{2}{10} + \frac{8}{10} \]

(4) \[P(k=3) = \frac{1}{10} \]
\[
\frac{b}{5} = \frac{2}{4} \times \frac{5}{2} \times \frac{8}{5} = \frac{2}{4} \cdot \left(\frac{8}{5}\right) = \frac{2}{5}
\]

\[
\frac{p(F|P)}{p(F|E) \times p(E)} = \frac{p(F|P)}{p(F|E) \times p(E)}
\]

[Complement rule]

Page 475
Let $F = \& \text{Choose } B = \text{Blue Ball}$

$p(F|E) = \frac{p(E|F) \cdot p(F)}{p(E)}$

$p(E|\&) = \frac{1}{2}$

$p(F) = \frac{1}{2}$

$p(E) = \frac{1}{2} \cdot 2 = 1$
\[
\frac{p(e \in E \times P(E) + p(e \notin E))}{p(e \in E) \times p(e \notin E)} = \frac{p(e \in E)}{p(e \notin E)} = \frac{1}{2}
\]

So, \(p(e) = 0.5 = L(E) = 0.12 \)

\(e = \{ \text{left position} \} \)

\(p(e) = 0.05 \)

\(E = \{ \text{left position} \} \)
\[
\text{\(\frac{106 - 2}{50 \cdot (0.12 \times 0.82)} \)}
\]