NOTATION. \[N = \{0, 1, 2, \ldots \} \]
\[\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \]
\[\mathbb{R} = \{ \text{all the real numbers} \} \]

DEF. RATIONAL NUMBERS

A rational number is a number \(\frac{a}{b} \) such that \(a \in \mathbb{N} \) and \(b \in \mathbb{N} \setminus \{0\} \) and \(\gcd(a, b) = 1 \).

\[\text{Eg: } \frac{a}{b} = \frac{1}{2} \to \frac{2}{4} , \frac{5}{9} , \frac{12}{8} \]

NOTATION. \(\mathbb{Q} = \{ \text{rational numbers} \} \)

DEF. IRATIONAL \(\equiv \) NOT RATIONAL.

Theorem. \(\sqrt{2} \) is irrational.

Proof. Assume \(\sqrt{2} \) is rational.

\[\therefore \sqrt{2} = \frac{a}{b} \quad (a, b \in \mathbb{N}) \quad (b \neq 0) \]
\[\gcd(a, b) = 1 \]

\[\sqrt{2} \cdot \frac{a}{b} = \frac{a^2}{b^2} \to \frac{2 \cdot b^2}{a^2} = \frac{a^2}{b^2} \]

\[\text{hence } a^2 \text{ is even } \Rightarrow a \text{ is even} \]

Then \(a = 2k_1 \quad (k_1 \in \mathbb{N}) \)

\[2 \cdot b^2 = (2k_1)^2 = 4k_1^2 \]
\[2b^2 = (2k_1)^2 = 4k_1^2 \]

\[b^2 = 2k_1^2 \]

\[\Rightarrow b^2 \text{ is even} \Rightarrow b \text{ is even} \]

\[b = 2k_2 \quad (k_2 \in \mathbb{N}) \]

\[\text{hence } \gcd(9, 5) \geq 2 \]

Contradiction to the assumption: \(s_2 \) is rational.

Here \(s_2 \) irrational

\[s_2 \implies \text{rational} \]

\[\neg p \implies \neg q \]

\[s_2 \land \neg q \]

\[(p \land q) \implies F \]

\[p \implies q \]

\[\neg (p \land q) \lor F \]

\[\equiv \neg (p \land q) \]

\[\neg (p \lor q) \]

\[p \lor q \equiv p \implies q \]

RESULT: There exists an irrational number such that \((x, y)\) is rational.

Solution: Let \(x = s_2 \), \(y = s_2 \).
Consider \(x^2 = 12 \) valid.

Consider \((\sqrt{12})^2 = 12 \) invalid.

Chap 2

Def. Set \(S \) is a collection of objects.

\(S = \{1, 2, \ldots \} \) is the natural numbers.

Def. Union, intersection, complement, difference.

Def. Union

Let \(A, B \) be two sets. Then

\[A \cup B = \{ x \mid (x \in A) \lor (x \in B) \} \]

\(S \) if

\[A = \{1, 3, 5, 6\} \quad B = \{1, 5, 7, 9, 10, 2\} \]

\[A \cup B = \{1, 2, 3, 5, 6, 7, 9, 10, 2\} \]

Inters: \(A \cap B = \{ x \mid (x \in A) \land (x \in B) \} \)

\(A \cap B = \{1, 5, 6\} \)
Diff: $A - 0 = \{ x \mid x \in A \land x \neq 0 \}$
$A - 0 = \{ 1, 3, 5, 6 \}$
$0 - A = \{ 7, 9, 10, 2 \}$

\[\overline{A} = A^c = \begin{cases}
1, 3, 5, 6 \\
A
\end{cases} \]

\[\text{univ} = \mathbb{N} \]

Complement:

\[\overline{A} = A^c = \begin{cases}
1, 3, 5, 6 \\
A
\end{cases} \]

\[= \{ 0, 2, 4, 7, 8, 9, \ldots \} \]

\[X \]

DEF: A, B be two sets. We say A is a subset of B: $(A \subseteq B)$

\[A \subseteq B \quad \iff \quad \forall x \in A \implies x \in B \]

Strict subset $A \subset B \iff (A \subseteq B) \land (A \neq B)$

\[(P \cup Q) = P \cup Q \quad \iff \quad (A \cup B)^c = A^c \cap B^c \]

\[(P \cap Q) = P \cap Q \quad \iff \quad (A \cap B)^c = A^c \cup B^c \]

Proof: $(A \cup B)^c = A^c \cap B^c$

\[\text{must show:} \quad (A \cup B)^c \subseteq (A^c \cap B^c) \quad \text{--- 1} \]

\[(A^c \cap B^c) \subseteq (A \cup B)^c \quad \text{--- 2} \]

Let $x \in (A \cup B)^c \implies x \notin (A \cup B)$
\[A = \{ a, b, c \} \]

\[\emptyset \subseteq A \iff \{ x \in \emptyset \Rightarrow \exists a \in A \} \]

\[\mathcal{B} = \{ \emptyset, 001, 010, 011, 100, 101, 110, 111 \} \]

Cartesian Product

\[A \times \mathcal{B} = \{ (a, b) \mid (a \in A) \land (b \in \mathcal{B}) \} \]

Example

\[A = \{ 1, 2, 3 \}, \quad \mathcal{B} = \{ 1, 2, 3 \} \]

\[A \times \mathcal{B} = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \} \]
DEF. A is a set. Then

\[|A| \] the size is \# of elements in the set if the set is finite.

Ex: \[A = \{1, 2, 3\} \] \[|A| = 3 \]

DEF. Function

Let \(A \subseteq B \) be two sets. Then \(f \) is a function from \(A \) to \(B \) (denoted \(f : A \rightarrow B \)) if and only if:

1. \((\forall x \in A) \ f(x) \in B\)
2. \((\forall x \in A) \ (\exists y \in B)\) such that \(f(x) = y \land y \) is unique.

Ex. Let \(f : N \rightarrow N \) \(\text{N} \)}
Let \(f : \mathbb{N} \rightarrow \mathbb{N} \)

\[f(n) = 2n \]

DEF: A function \(f : A \rightarrow B \) is said to be one to one if and only if

\[(\forall x_1, x_2 \in A) \quad [x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)] \]

\[f(x_1, x_2) = \underbrace{\ldots}_{2 	imes 2} \]