Finite Probability

Definition: Finite probability of an event A in a sample space S, is a non-empty, likely outcome and event A in S.

If S is a non-empty sample space, then a die is thrown and called the sample space.

Example: This coin, $p(H) = 1/2$. That's called the sample space.

Perform an experiment, collect outcomes. Sample space is set.

Sample space: $\{S \in S\}$.
1 \Rightarrow 0 = p(e)

\forall \varepsilon > 0 \exists \delta > 0

E \subseteq S, \varepsilon \varepsilon |x - a|

\exists \varepsilon > 0, \delta > 0

\delta = \frac{|1|}{|E|} = \frac{1}{4}

\forall x \in E (x) = \frac{1}{4}

\exists \varepsilon > 0, \delta > 0

\varepsilon = \frac{1}{4}, \delta = \frac{1}{4}

S = \{ b, c, d, e, f, g, \ldots \}

random is blue.

\begin{align*}
\text{What is the product of the last column?} & \\
\text{Result is } 3 & \\
\text{Answer is } 4b & \\
\end{align*}
\[\frac{|S|}{|T|} = \frac{|S|}{|E| - |F(E)|} = 1 - \frac{|F(E)|}{|E|} \]

Proof: \(E = S - E \)

\[(c = 5) \]

Theorem 1: \(E - \text{cut} \cap S - \text{same} \frac{1}{2} x \)

\[P(E) = \frac{|E|}{|G|} \]

\[E = 5, 6, 9, \ldots, 999 \]

\[S = \{ 8, 10, \ldots, 100 \} \]

\[\text{count} \in S \]

\[\text{count} \in S \]
\[P(E) = 1 - \frac{|S|}{|E|} \]

\[|S| = 1 |E| = 1 - \frac{|S|}{|E|} \]

\[|E| = |S| - \frac{|S|}{|E|} \]

\[|S| = 10 \]

So, let \(S = \{ All \ the \ possible \ 4, \ 5, \ 6 \} \in S \) and show that the length of \(S \) is 0.

Then \(|S| = 0 \).

What is the product of 5 and 3?

Exist random element (0, 9).
\(p, (E_{1,0}) = S, (E_1) + S, (E_2) - L, (E_{1,0}) \)

\((E_2) = 20 \), \(E_{1,0}\) = \{1,0,2\}, \ldots, (m) \)

\(E_1 = \phi \), \(E_1 = \{\} \).

Let \(E_1 = \{\} \), \(E_1 = \{\} \).

Let \(S = 5, 1, 2, 3, \ldots \), \(k = 10 \).

\[\text{is a division by 2 or more.} \]

Selection of random unit excising for the problem's integer.

\[\text{Ex:} \frac{1}{3} \text{. The } \text{method is shown.} \]

\[\text{Ex:} \frac{1}{3} \text{. The } \text{method is shown.} \]

\[\phi, (E_{1,0}) = S, (E_1) + S, (E_2) - L, (E_{1,0}) \)

\[\frac{5}{5} \]

\[\frac{5}{5} \]

\[\text{Ex:} \frac{1}{3} \text{. The } \text{method is shown.} \]

\[\phi, (E_{1,0}) = S, (E_1) + S, (E_2) - L, (E_{1,0}) \]

\[\text{Theorem:} \text{ each in a sample space.} \]
First note:

Two consecutive words: Given that the
previous problem dealt with throwing a die,
the size of length a is:

\[\frac{P(A \mid F)}{P(A \mid \text{not } F)} = \frac{P(A)}{P(\text{not } A)} \]

The conditional probability of the event E

Let E, F, be such that a sample

Def: Let F, F' be two disjoint sub-

See many more problems from that text.
\[
\frac{\text{E}(F)}{\text{E}(\text{EF})} \rightarrow \frac{\text{H}}{\text{H}} \\
\}
\]

\[
\text{P} = \{ \text{John, Mark, Peter} \} = \{ \text{m, p, j} \}
\]

\[
\text{E} = \{ \text{Son, Daughter, Son} \} \leftrightarrow \text{Son, Daughter, Son}
\]

Boy, hey, what's going on here? I've been with 2 children, he's the

\[S = \{ 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 \} \]

\[\text{S} = \{ 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 \} \]

\[\text{S} = \{ 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 \} \]

\[\text{S} = \{ 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 \} \]
\[\text{If } \exists p \in A \text{ such that } \{p, q, r\} \subseteq A \text{ then } \{p, q, r\} \subseteq B \]

\[\therefore p \in B \]

\[\text{Let } e \neq f \text{ and } a \neq b. \]

\[\begin{align*}
\text{Addendum:} & \\
\text{Proof:} & \\
\{p \in T : p(\epsilon) \neq p(f)\} & \subseteq A
\end{align*} \]
\[p \in \{ \} \text{ or } \{2, 4, 5\} = \{ \} \text{, which is empty, since } n \]

\[E = \{ 2, 3, 5 \} \text{, but } E = \{ e \} \text{ where } e = 2 \%
\]

\[S = \{ 2, 3, 5, 6, \ldots \} \text{, but } S = \{ 5, 6, 7, \ldots \}
\]

\[\boxed{\text{Example with } 3 \text{ kids}} \]

\[\boxed{\times} \]

\[E \notin S \} \text{, but } P(E) = \frac{1}{4} \neq \frac{1}{2} (P(E) \text{ is } \frac{1}{2}) \]

\[f = \{ 2, 3, 4, 5 \} \text{, but } f = \{ 2, 3, 4 \}
\]

\[E = \{ 5, 6, \ldots \} \text{, but } E = \{ 5, 6 \}
\]

\[\boxed{\text{Solution: \text{\text{not independent}}}} \]

\[\boxed{\text{Example with 2 children}} \]

\[S = \{ \} \text{, which is empty, since } n \]
\[P(\text{EEF}) = \frac{\gamma}{\gamma + \beta} = P(\text{EE}) \cdot P(\text{F}) = \frac{\gamma}{\gamma + \beta} \]

If \(\{ \text{EEF}, \text{EFG}, \text{GFG} \} \) then \(P(\text{EEF}) = \frac{3}{8} \)