Some 5, 6, 7.

\[(1 - p_n) - \text{ all but 2 having test}\]

\[\frac{1}{5(5 - 4)} \ldots \frac{1}{3(3 - 2)} \ldots \]

\[\frac{1}{3!} \frac{3!}{2!} \frac{3!}{1!} \ldots \]

\[\text{Solve}\]

If having this same birthday

The will be a 96.7 chance (75.94)

In a group so that two people

How many people do you need?
\[n \in \mathbb{N} \]
\[1.5 > p_n \]
\[1 - p_n > 0.5 \]
\[
P_r(B/R) = \frac{p_r}{p_r \cdot p_{\text{red}} + p_b \cdot p_{\text{blue}}}
\]

\[
\text{Let } R = \text{event that red ball was chosen.}
\]

\[
\text{Let } B = \text{event that blue ball was chosen.}
\]

We want to compute the probability that Bob picks a red, given that Alice picked a red ball. If Bob picks a red ball, what is the probability that Alice picked a red ball? If Bob picks a red ball, what is the probability that Alice picked a red ball?
\[
\Pr(E) = \Pr(E \cap F) + \Pr(E \cap F^c)
\]

Now, since \((E \cap F) \cup (E \cap F^c) = E \),

\[
E = (E \cap F) \cup (E \cap F^c)
\]

Thus, \(\Pr(E) = \Pr((E \cap F) \cup (E \cap F^c)) \)

\[
\Pr(E) = \Pr(E \cap F) + \Pr(E \cap F^c)
\]

\[
\Pr(E) = \frac{1 - \Pr(F^c \cap E)}{\Pr(F)}
\]

Proof: \(\Pr(F \cap E) = \frac{1}{\Pr(F)} \)

Suppose \(E \) and \(F \) are events from sample space \(S \) such that \(\Pr(E) \neq 0 \neq \Pr(F) \). Then

There are 749.
\[P(e|f) \cdot P(f) + P(e|\neg f) \cdot P(\neg f) = P(e) \cdot P(f) \]

\[\therefore P(e|f) = P(e|f) \cdot P(f) \]

\[P(e|\neg f) = P(e|\neg f) \cdot P(\neg f) \]

new \[P(e|f) = P(e|\neg f) \cdot P(f) \]
\[
\frac{\ln \left(\frac{p(H|d)}{p(H)} \cdot \frac{p(H|\bar{d})}{p(\bar{d})} \right)}{\ln \left(\frac{p(H|d)}{p(H)} \right)} = \frac{\ln \left(\frac{p(H|\bar{d})}{p(\bar{d})} \right)}{\ln \left(\frac{p(H|d)}{p(H)} \right)}
\]

\[
H_{B} = \text{Hypothesis B}
\]

\[
\text{Let: } \quad \frac{p}{p_{2}} = 3 \quad \text{and} \quad \frac{p}{p_{3}} = 2 \quad \text{and} \quad \text{positive}
\]

\[
\text{Solution:}
\]

\[
\text{If the hypothesis is correct, it is more likely that person D生于 1945.}
\]

\[
\text{If person D生于 1945, the hypothesis is likely.}
\]

\[
\text{Then 0.995% accurate.}
\]

\[
\text{Person D is not likely the doctor.}
\]

\[
\text{Person is not the doctor.}
\]

\[
\text{Test for design 9% accurate, at the}
\]

\[
\text{Example: } \quad p(H_{B} | \text{Daron died}) = \frac{1}{1000000}
\]
\[
\text{pH (HCl/Hz)} = 0.02
\]

\[
\text{pH (HCl/Hz)} = 1 - 0.02 = 0.98
\]

\[
\text{pH (HCl/Hz)} = 0.99
\]

\[
\text{pH (HCl/Hz)} = 1 - \frac{160}{9000}
\]

\[
\text{pH (HCl)} = 0.99
\]
לט סדר עם וניגון

\[
\frac{1}{n}\cdot \frac{1}{n}\cdot g(c) = n^g(c)
\]

לט \(p(c) = n^g(c) \)

сколько \(\mu \)?

\(\mu(c) \) : \# של \(\mu \) מסכיים \(\in \) \(\mathbb{C} \)

לט \(\| \| \) : \# של \(\mu \) מסכימים \(\in \) \(\mathbb{C} \) סכימים

לט \(\mu \) : \# של \(\mu \) מסכימים

פוזיציה סמן עם עליה
\[p(\text{s|e}) = \frac{p(\text{e|s})}{p(\text{e})} \]

\[\frac{1.57 - 0.05}{1.57} = 0.942 \]

\[p(c) = \frac{2c}{5} \]

\[\frac{L_000}{5} = 2c \]

\[p(\text{e}) = \frac{2000}{L_000} \]

\[\sum \text{n,k} \]

\[\text{Assum} \]

\[p(\text{e|s}) = 0.5 \]

\[\frac{p(\text{e|s})^2 + p(\text{e|s})}{p(\text{e|s})^2} = \frac{p(\text{e|s})^2}{p(\text{e|s})^2} = 1 \]

\[p(\text{e}) = \frac{p(\text{e|s})^2}{p(\text{e|s})^2 - p(\text{s})} \]