\[
\frac{\theta(s/a) \cdot r(c)}{\theta(s/r) \cdot r(c)} = \theta(s/e)
\]

For \(s \in \mathcal{E}_{odd} \) span \(e - \{s\} \) classes contain \(\{\}
\]

(6)

Let \(p(c) = \mu(d) \)

Let \(p(c) = \mu(d) \)

181: Total # of span words

182: Counting the words "can"

183: # of span words that

\(\mu(c) \) of span words that

\(\mu(c) \) of span words that

Non-span

Pick a sound "can"

April 15
\[
N(\mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

\[
N(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

\[
\phi(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

\[
\mu = 2000, \sigma = 250
\]

\[
\text{Area 5}
\]

\[
\frac{p(c)}{p(c \lor e)} = N(c)
\]

\[
\frac{p(e) + p(e | c)}{p(e | c)} = \frac{p(e \lor c)}{p(c)}
\]

\[
\text{Area 250}
\]

\[
\text{Area 5}
\]

\[
\text{Area 250}
\]

\[
\text{Area 5}
\]

\[
\text{Area 250}
\]

\[
\text{Area 5}
\]

\[
\text{Area 250}
\]
\[
\frac{p(\text{El} | \text{Y}) + p(\text{El} | \text{S}) \cdot p(\text{S} | \text{Y})}{p(\text{El} | \text{S})} = \frac{p(\text{El} | \text{Y})}{p(\text{El} | \text{S})}
\]
\[S = \{ H \} \]

\[x(H) = 5 \]

\[x(\varepsilon) = 2 \]

\[x(\beta) = 1 \]

\[x(\gamma) = 1 \]

\[\frac{1}{2} \cdot \left(\frac{1 + 2}{2} \right) = 3 \]
\(a_1 = 1 \) → Non Count Categorically.

\(a_2 = 2a_{n-1} + 5 \) → Non Homogeneous.

\(a_n = a_{n-1} + qr \) → Linear.

\(a_n = c_1g_1 + c_2g_2 + \cdots + c_ng_n \) → General Solution of the form with constants.

Def: A linear homogeneous recurrence with constant coefficients is of the form with constants.

\[P.2 \]
\[a_n = \frac{5}{4} a_{n-1} + \frac{3}{4} a_{n-2} + \frac{8}{4} b_{n-2} \]

\[b_n = c_n + c_{n-1} \]

\[c_n = c_{n-1} + c_{n-2} \]

\[a_n = a_{n-1} + c_{n-2} \]

Case 2.
\[a_n = c_1 + c_2 + c_3 \]

\[a_n = 2a_{n-1} + a_{n-2} - 2n - 3 \quad n \geq 2 \]

\[\text{Solve: let } a_n = n \]

\[n = 2n^2 + n - 2 \]

\[n = 2n + 1 \quad \text{and } n = 2n - 1 \]

\[n = 2 \quad 9^2 + 9 = 0 \]

\[a_n = 2a_{n-1} + a_{n-2} - 2n - 3 \quad n \geq 2 \]
\(c = 2c_1 + 6c_3 \)

\(b = 2c_1 + 3c_3 \)

\(\hline \)

\((1) \) \(c_1 = b_1 + w_1 + 4c_3 \)

\((2) \) \(c_1 - c_2 + 2c_3 \)