\[P(e) = \frac{|S|}{|E|} = \frac{2}{2} = 1 \]

Let \(E = \{ 2, 4, 6 \} \) and \(S = \{ 1, 3, 5, 7 \} \) (Theorem 2).

\[P(e) = \frac{|S|}{|E|} \]

For each pair of elements in \(S \) and \(\{ 1, 3, 5, 7 \} \), we check if \(S \) is a proper subset of \(\{ 1, 3, 5, 7 \} \).
Let \(p(e) = 1 - p(e) \) then \(p(e) = 0 \) for \(e \in S \) and \(|S| > 5 \).

\(p(e) = 0 \Rightarrow e \in e \)

Note: \(e \neq \emptyset \) and \(p(e) = 0 \)

\[
\frac{10}{20} = \frac{|S|}{|E|} = \frac{5}{4}
\]

\(S = \{ 1, 2, 3, 4, 5 \} \)

Sign that \(n \neq 0 \): 0

Which is possible when \(n \neq 0 \)

\(\text{Pass at} \)
\[
\begin{align*}
& \mathbb{P}(E) = 1 - \mathbb{P}(\overline{E}) \\
& \mathbb{P}(E) = 1 - \frac{2}{3}
\end{align*}
\]
Theorem 2: Let \(E \), \(F \) be \(\alpha \)-rings.

\[P(E, \text{vec}) = P(E_1) + P(E_2) - P(E_1 \text{vec}) \]

\[|E_{vec}| = |E_1| + |E_2| - |E_1 \text{vec}| \]

Proof: Let \(E \) be a \(\alpha \)-ring. Then

\[P(E, \text{vec}) = P(E_1) + P(E_2) - P(E_1 \text{vec}) \]

\[|E_{vec}| = |E_1| + |E_2| - |E_1 \text{vec}| \]
\[a(b) = b \cdot a \] 0 = 0

\[\text{sum} = \text{sum} + 1 - \text{acc}(\text{sum}) \]

\[\text{acc}(\text{sum}) = \frac{a}{10} \text{ rem } 0 \]

\[\text{sum} = 0 \]

\[\text{acc}(\text{sum}) = 0 \]

\[2 \quad 1 \quad 6 \quad 0 \]

\[\text{acc}(\text{sum}) = 0 \]

\[3 \quad 2 \quad 7 \quad 6 \]

\[\text{sum} = 0 \]

\[\text{acc}(\text{sum}) = 0 \]

\[\text{MMP} (10) \]

\[\text{acc}(\text{sum}) = 0 \]

\[3 \quad 2 \quad 7 \quad 6 \]

\[\text{acc}(\text{sum}) = 0 \]
\(\theta \) = (7) \(\frac{(7)}{11} \) \(\frac{(11)}{2.1} \)

\((11) = 1 \) \((2.1) \)

\((7) = 1.8 \)

E = \{ pivot \} even class

\(\text{even _num} = 11 \)

\(\text{pivot _num} = 7 \)

\(S = \{ 1, 2, 3, \ldots, 50 \} \)

\(\text{max _num} = 51 \)
\[p(e/f) = \frac{p(e) \cdot p(f)}{p(f)} \]

Independent

Given \(E \) and \(F \):

\[p(e/f) = p(e|f) \]

Also, from the data:

\[p(e/f) = 1/3 \]