8. Find the least integer \(n \) such that \(f(x) \) is \(O(x^n) \) for each of these functions:
 a) \(f(x) = 2x^2 + x^3 \log x \)
 b) \(f(x) = 3x^2 + (\log x)^4 \)
 c) \(f(x) = (x^4 + x^2 + 1)/(x^4 + 1) \)
 d) \(f(x) = (x^3 + 5\log x)/(x^4 + 1) \)

18. Let \(k \) be a positive integer. Show that \(1^k + 2^k + \ldots + n^k \) is \(O(n^{k+1}) \).

22. Arrange the function \((1.5)^n, n^{100}, (\log n)^3, \sqrt{n} \log n, 10^n, (n!)^2, \) and \(n^{99} + n^{98} \) in a list so that each function is big-\(O \) of the next function.

24. Suppose that you have two different algorithms for solving a problem. To solve a problem of size \(n \), the first algorithm uses exactly \(n^2 2^n \) operations and the second algorithm uses exactly \(n! \) operations. As \(n \) grows, which algorithm uses fewer operations?

26. Give a big-\(O \) estimate for each of these functions. For the function \(g \) in your estimate \(f(x) \) is \(O(g(x)) \), use a simple function \(g \) of smallest order.
 a) \((n^3 + n^2 \log n)(\log n + 1) + (17 \log n + 19)(n^3 + 2)\)
 b) \((2^n + n^2)(n^3 + 3^n)\)
 c) \((n^n + n2^n + 5^n)(n! + 5^n)\)

30. Show that each of these pairs of functions are of the same order:
 a) \(3x + 7, x \)
 b) \(2x^2 + x - 7, x^2 \)
 c) \([x + 1/2], x \)
 d) \(\log(x^2 + 1), \log_2 x \)
 e) \(\log_{10} x, \log_2 x \)