2. Find the probability of each outcome when a loaded die is rolled, if a 3 is twice as likely to appear as each of the other five numbers on the die.

8. What is the probability of these events when we randomly select a permutation of \(\{1, 2, \ldots, n\} \) where \(n \geq 4 \)?
 a) 1 precedes 2.
 b) 2 precedes 1.
 c) 1 immediately precedes 2.
 d) \(n \) precedes 1 and \(n - 1 \) precedes 2.
 e) \(n \) precedes 1 and \(n \) precedes 2.

12. Suppose that \(E \) and \(F \) are events such that \(p(E) = 0.8 \) and \(p(F) = 0.6 \). Show that \(p(E \cup F) \geq 0.8 \) and \(p(E \cap F) \geq 0.4 \).

16. Show that if \(E \) and \(F \) are independent events, then \(\bar{E} \) and \(\bar{F} \) are also independent events.

24. What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up tails?

28. Assume that the probability a child is a boy is 0.51 and that the sexes of children born into a family are independent. What is the probability that a family of five children has
 a) exactly three boys?
 b) at least one boy?
 c) at least one girl?
 d) all children of the same sex?